

Ernesto Urbaez (eurbaez@pavement.com.au) PMS-QLD

Acknowledge:

Avesh Maharaj (avesh.maharaj@weareyotta.com)

Sen Vigneswaran (sen.vigneswaran@townsville .qld.gov.au)

About...Townsville

Capital of Northern Australia

The City with Opportunity and Great Lifestyle

The Asset Management – WHY?

...Journey to Achieve Sustainability in Business Performance...

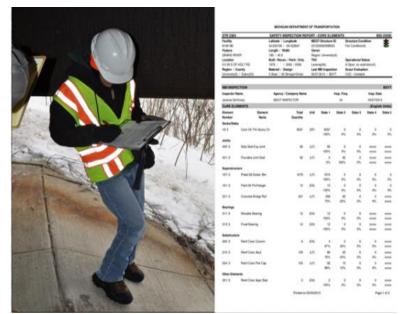
- What do they own and where is it?
- What are these assets worth?
- What is its remaining service life?
- What condition is it in?
- What do they spend and what should they spend/invest?
- What is the gap?
- How do they get sustainable infrastructure?

How resilient is their infrastructure?

The Asset Management – HOW?

...Journey to Achieve Sustainability in Business Performance...

- Inspection / Data Collection
- Condition Assessment
- Deterioration Model
- Decision Making
- Maintain | Repair | Rehabilitate | Replace
- Prioritise Future Needs
- GIS INTEGRATED INTO AN ASSET MANAGEMENT SYSTEM



Condition Assessment

Traditional (Qualitative)

Innovation (Technology / Quantitative)

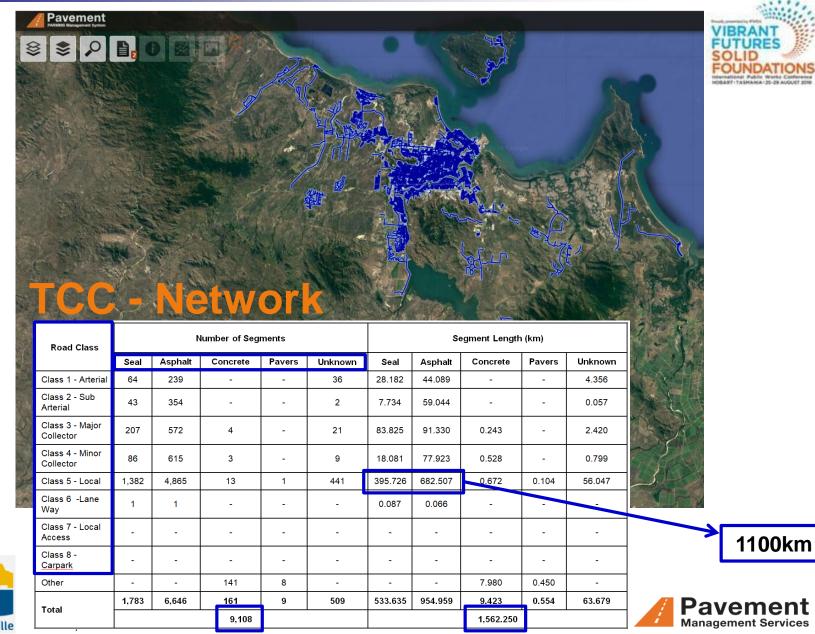
The relationship for determining the pavement condition index is as follows;

$$PCI = 100 - \sum_{i=1}^{M} WF_{int} \max\left[0, \left(\min\left(1, \frac{PD_{int} - PM_{int}}{MD_{int}}\right)\right)\right]$$

Where:

n

С


PM

- PCI = pavement condition index
 - = number of pavement distresses included in the PCI
 - segment road class
- WF = weighting factor of surface distress type *n* for road class *c*
- PD = extent of pavement distress type n
 - = minimum extent of distress type *n* allowed for road class *c*
- MD = maximum extent of distress type *n* allowed for road class *c*

Cityof Townsville 1100km

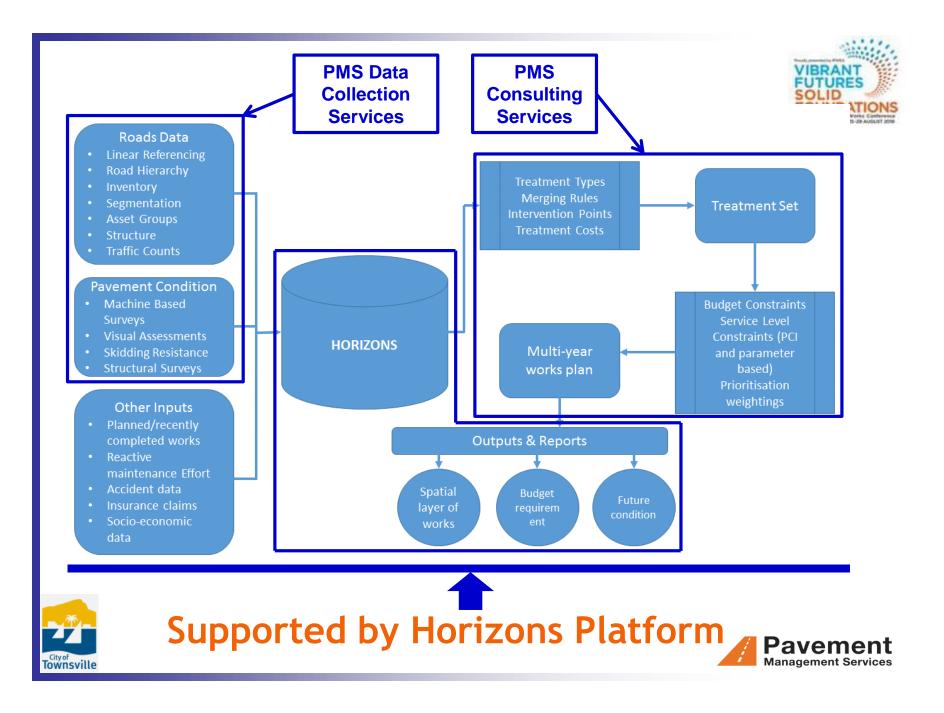
Pavement Management Services

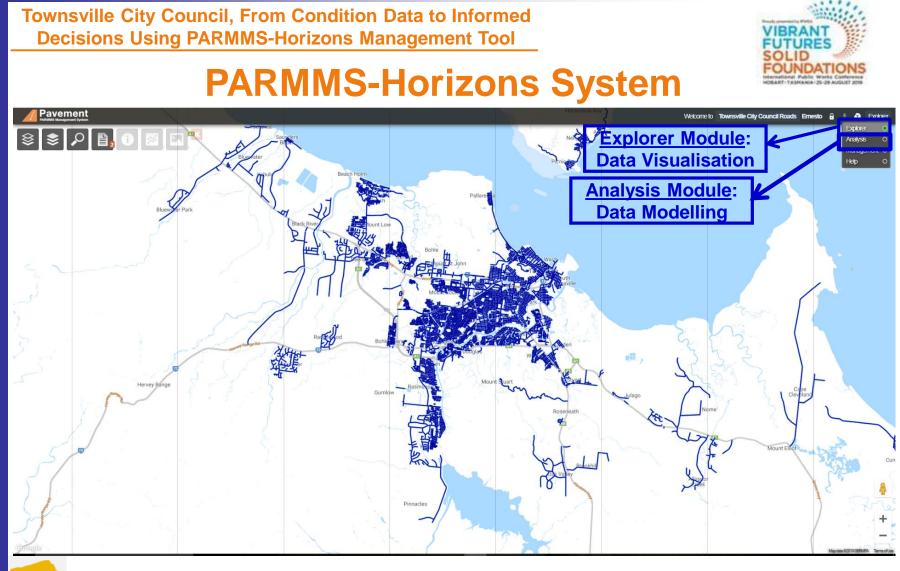
TCC made the decission to find a system that incorporate pavement condition data into a management tool, that uses multiple data sets to provide a higher level of understanding of the road network.

HORIZONS

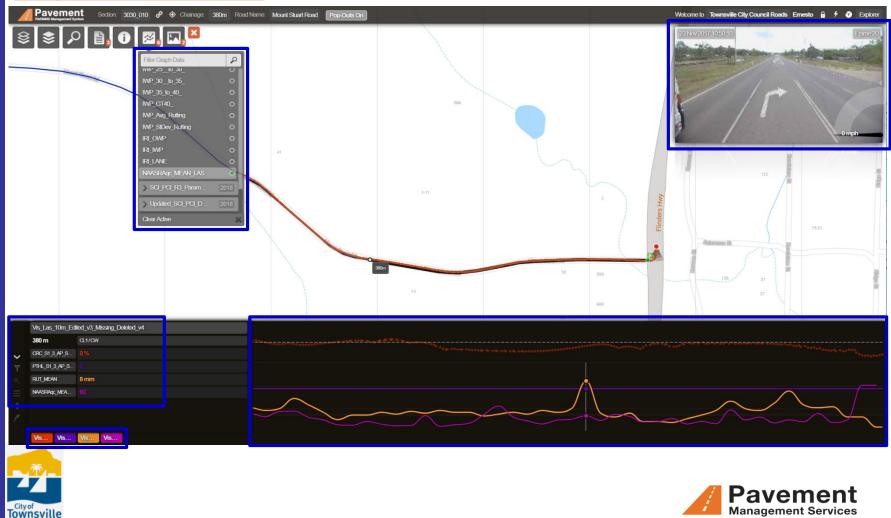
From Data Collection

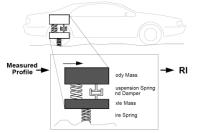
to Informed Decision





PARMMS® Road Manager Now Powered by YOTTA-UK




Explorer Module: Interface and Data Visualisation

Data Analysis: Distresses for Modelling

Roughness

Computer Algorithm

Rutting

Figure 4.5: Straightedge and wedge manual rut depth measurement

Source: Australian Road Research Board.

Cracking

A.1.6 Cracking – Crocodile Cracking (Alligator Cracking, Crazing) (CR)

Description:

Interconnected or interlaced cracks forming a series of small polygons resembling a crocodile skin. Crocodile cracking is often confined to the wheelpaths and may have a noticeable longitudinal grain. The presence of crocodile cracking usually signifies that the surfacing has reached the end of its design

Collected by PMS using the ARAN System

City of

Townsville

Distribution of Roughness (NRM) Across the Network

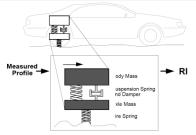
Roughness	Network 92%	Seal				Asphalt			
(NRM) Bins		Class 1&2	Class 3&4	Class 5	Class 6, 7&8	Class 1&2	Class 3&4	Class 5	Class 6, 7&8
40 – 80	53.41%	57.76%	52.80%	41.08%	-	67.10%	61.76%	57.85%	-
80 – 150	38.46%	30.42%	37.91%	46.13%	-	28.04%	33.09%	36.58%	33.33%
150 – 200	5.80%	7.70%	6.73%	8.83%	50.00%	3.42%	3.90%	4.16%	-
> 200	2.33%	4.12%	2.57%	3.97%	50.00%	1.44%	1.24%	1.41%	66.67%
PMS Network 2017-06-21 V Count V MASSRyer, MEXNLAS 2.565 Grader Ban 200 6.446 MASSRyer, MEXNLAS 42.774 Debuson (b) And 150 42.774 MASSRyer, MEXNLAS 50.901 Debuson (b) And 150 42.774 Debuson (b) And 150 50.901 Debuson (b) And 150 50.901 Debuson (b) And 150 50.901	53.41 %			2				Alleshor Greek Majors Creek	Cunsulla Cunsulla Giru Horsesh Lagoo
ø		Download As CSV Done				7	Woest		

Distribution of Rut Depth (mm) Across the Network

	Rutting		4		Seal			Asphalt			
	(mm) Bins	Ne	twork 90%	Class 1&2	Class 3&4	Class 5	Class 6, 7&8	Class 1&2	Class 3&4	Class 5	Class 6, 7&8
	0 – 3	3	7.32%	7.92%	5.25%	11.54%	-	31.95%	44.29%	58.86%	-
	3 – 8	5	3.10%	75.86%	65.37%	68.67%	-	62.37%	52.58%	39.18%	100%
	8 – 15	8	8.73%	15.03%	26.67%	18.84%	50.00%	5.29%	2.98%	1.75%	-
	> 15	C).85%	1.19%	2.72%	1.75%	50.00%	0.40%	0.15%	0.21%	-
	PMIS Network 2017-06-21 ✓ Count ✓ RUT_INEAN Detween 0 63,440 Arcl 3 78,025 RUT_MEAN Detween 3 78,025 RUT_MEAN Detween 8 12,500 RUT_MEAN Greater than 1,219 Total : 143,184		37.32	% Download As CSV Done						All Cor Officers Workstock Reference	Cinumad Cunnulla Cunnulla Giru Horsesh Lagoo reek
City of Townsvil										Pav Manage	ement ment Services

Distribution of Cracking (% Area) Across the Network

Filter Layers Filter Layers NAASRA_Mean NAASRA_Greater than 4 Linear_Craking Ravelling Fatigue_Cracking_1.5% Fatigue_Cracking_3% Rutting_Mean PCI Bubble map	0 Faix 0 0 F 0 0	gue_Cracking_3% Leg Fatigue Cracking Betw Fatigue Cracking Betw Fatigue Cracking Betw Fatigue Cracking Grea	een 0 And 3 een 3 And 8 een 8 And 15	Yuruga Bambaroo Coolbie Muun Cryst	lee al Creek Rolling Clemant Bl	lila bita uevu er Park	ā. 1	Pronce Bay	
Fatigue Cracking	Network	Seal				Asphalt			
(%) Bins		Class 1&2	Class 3&4	Class 5	Class 6, 7&8	Class 1&2	Class 3&4	Class 5	Class 6, 7&8
0 – 3	95.88%	96.35%	99.33%	98.59%	100%	95.48%	96.12%	93.79%	71.43
3 – 8	1.45%	1.30%	0.22%	0.50%	-	1.77%	1.38%	2.16%	-
8 – 15	1.38%	1.22%	0.25%	0.45%	-	1.45%	1.49%	2.04%	14.29%
> 15	1.30%	1.13%	0.19%	0.46%	-	1.30%	1.01%	2.01%	14.29%



Data Analysis: Distresses for Modelling

Roughness

Computer Algorithm

Rutting

Figure 4.5: Straightedge and wedge manual rut depth measurement

Source: Australian Road Research Board.

Cracking

A.1.6 Cracking – Crocodile Cracking (Alligator Cracking, Crazing) (CR)

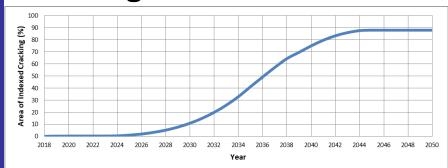
Description:

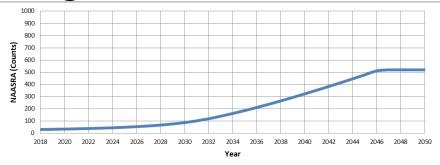
Interconnected or interlaced cracks forming a series of small polygons resembling a crocodile skin. Crocodile cracking is often confined to the wheelpaths and may have a noticeable longitudinal grain. The presence of crocodile cracking usually signifies that the surfacing has reached the end of its design

General Network Condition: Good / Very Good!

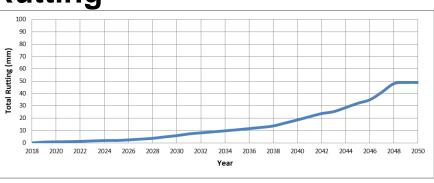
Intervention Levels

Road Class	Surface Type	Treatment Category	Treatment Type	Treatment Cost (\$/ <u>sqm</u>)	Fatigue Cracking (%)	NAASRA (counts/km)	Rutting (mm)
		Do Nothing	Do Nothing	N/A	<1.5	30 - 60	<3.0
Road Class		Resurface	Reseal	12.0	1.5 – 3.0	<u> 30 – 60</u>	<3.0
1 & 2		Rehabilitation	Mill and Replace (<u>Chipseal</u> 10mm+14mm)	60.0	1.5 – 3.0	60 – 120	>3.0
		Reconstruction	Reconstruction	95.0	>3.0	>120	>3.0

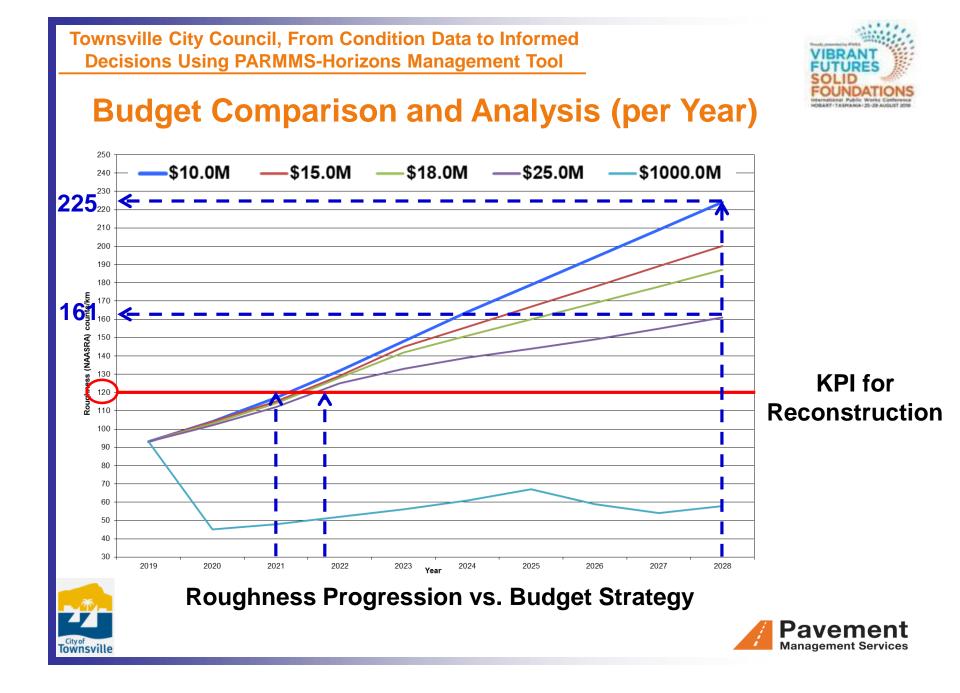




Deterioration Models Based on Historical Data / PMS Experience

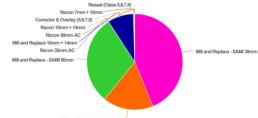

Cracking

Roughness



Rutting

PARIMMS Management System	INS .	Treatment Set Summary					
Details							
Treatment Set Name	Model 1_2018 - TCC - PMS_V2						
Report Network 🛕	PMS Network 2017-06-21 PMS Network 2017-06-21						
Network Filter Layer							
Sub-section Length	10.00m						
Minimum Treatment Length	1.00m						
Consider Alternative Treatments	No						
Deteriorate To Date	No						
Merged Using	Worst Condition						
XSP Merge Method	All						
Whole Section Merge	No						
Merge Short Treatments	Yes						


Treatment Set Summary

Total Spend Required \$636,888,380.60

Total Quantity Required 9,035,407 m²

Pavement /HORIZONS

This report contains details regarding the complete list of treatments triggered over the network in the current condition. The total cost of treatments given below is indicative and is based on the treatment costs provided within treatment definitions. A detailed list of treatments can be found in the Treatment Set Configuration report.

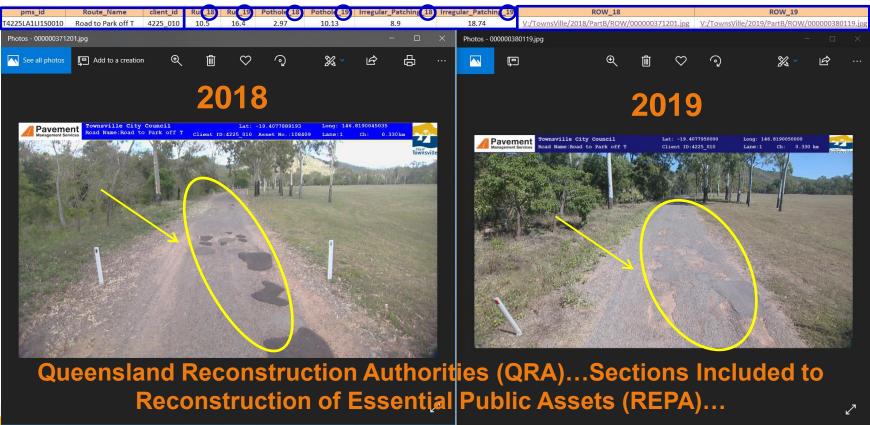
This report contains details regarding the complete list of treatments triggered over the network in the current condition. The total quantity of treatments given below is indicative and is based on the treatment type provided within treatment definitions. A detailed list of treatments can be found in the Treatment Set Configuration report.

Recon Torms + form Corrector & Overlay (5.77.8) Recon Torms + Harm Recon Storm AC Mill and Replace 10mm + Harm Recon Storm AC Mill and Replace - SAMI Storm

Year 1 Works Program

Mill and Replace 7mm + 10mm

	Mill and Replace - SAMI 35mm	\$279,210,373.92	Mill and Replace - SAMI 35mm	3,722,805 m ²
	Mill and Replace 7mm + 10mm	\$108,076,212.70	Mill and Replace 7mm + 10mm	2,161,524 m²
	Mill and Replace - SAMI 50mm	\$190,509,022.83	Mill and Replace - SAMI 50mm	2,189,759 m²
	Recon 35mm AC	\$397,680.00	Recon 35mm AC	3,977 m²
	Mill and Replace 10mm + 14mm	\$54,883,473.60	Mill and Replace 10mm + 14mm	914,725 m²
	Recon 50mm AC	\$2,117,901.85	Recon 50mm AC	18,910 m²
	Recon 10mm + 14mm	\$1,029,789.17	Recon 10mm + 14mm	10,840 m²
	Corrector & Overlay (5,6,7,8)	\$393,832.33	Corrector & Overlay (5,6,7,8)	9,377 m²
	Recon 7mm + 10mm	\$266,944.20	Recon 7mm + 10mm	3,141 m²
	Roseal (Class 5,6,7,8)	\$3,150.00	Reseal (Class 5,6,7,8)	350 m²
e				



Townsville...To Sum up...Conclusions

Data Collection...Informed Decisions...Moving Forward...

Thank You...

Ernesto Urbaez (Senior Pavement Engineer)

(eurbaez@pavement.com.au)

Ph: (07) 5357 9841 / M: (0403) 240 716

