Structural Modelling of Expansive Clay Subgrades Treated with Lime

Scott Young BE (Hons), RPEng (Civil), RPEQ Technical Manager, SPA

In late 2017, Austroads released an updated version of their Guide to Pavement Technology Part 2: Pavement Structural Design.

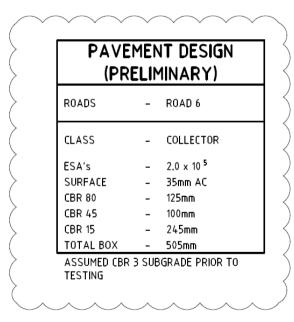
One new addition to 'the Guide' was the introduction of a stabilised subgrade modelling procedure whereby the determination of a suitable treatment thickness and the corresponding design CBR are directly related to the bearing capacity of the underlying subgrade.

- 1. Background
- 2. Austroads Structural Design Method
- 3. Austroads Mix Design Method
- 4. Design Example

BACKGROUND

Se Expansive Soils in Australia

5


A Pavement Design

- □ Wetting and drying of expansive soils provides considerable challenges
- □ Very thick and expensive pavement structures often required
- □ Even with adequate cover, expansive soils can still affect the performance of new payments

Effects of Expansive Soils

- 4TH Edition was published Oct 2017.
- Released Dec 2017.
- State Road Authorities commenced releasing their Pavement Design Supplements from 2018.

AUSTROADS STRUCTURAL DESIGN METHOD

Design Subgrade CBR v Stabilisation Thickness

The Austroads Guide to Pavement Technology, Part 2: Pavement Structural Design (2017), provides guidance to practitioners on methods for the selection and design of stabilised subgrade materials to improve the California Bearing Ratio (CBR) of the treated layer.

It is a tiered approach with iterations between design CBR and stabilisation thickness.

STABILISED SUBGRADE DESIGN CBR SELECTION

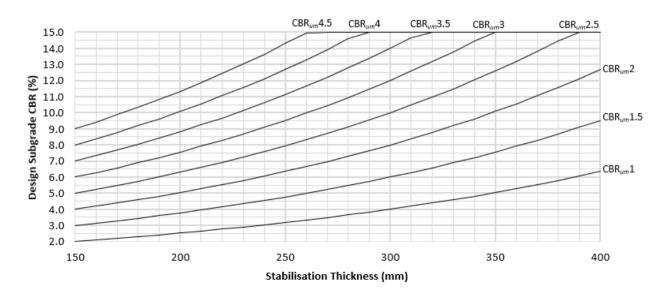


Minimum CBR of:

- A. 15%;
- B. Field Results or Presumptive Values;
- **C**.

CBR STAB. SUBGRADE = CBR UNDERLYING MATERIAL X 2 (STABILISED SUBGRADE THICKNESS / 150)

This approach did not exist in previous design guides



The following chart illustrates an iterative approach to selection of a design subgrade CBR and stabilisation thickness based on the above equation.

Selection of Design CBR for Stabilised Subgrades

A Mechanistic LEA Properties

Once a design subgrade CBR has been selected, a vertical modulus (E_v) is established using the equation below for input into layered elastic analysis models (Austroads, 2017).

Modulus (MPa) = $10 \times CBR$

A maximum value of 150MPa is normally adopted with a Poisson's ratio of:

- 0.45 for cohesive materials
- 0.35 for non-cohesive materials.

Guide to Pavement Technology Part 4D Stabilised Materials

AUSTROADS MIX DESIGN METHOD

3

BINDER SELECTION

Particle size	More than 25% passing 75 µm sieve			Less than 25% passing 75 µm sieve				
Plasticity index (PI)	PI <u><</u> 10	10 < PI < 20	PI <u>≥</u> 20	PI <u><</u> 6 & PI x %passing 75 μm ≤ 60	PI <u><</u> 10	PI > 10		
Binder type								
Cement and cementitious blends ^(1,3)	Usually suitable	Doubtful	Usually not suitable	Usually suitable	Usually suitable	Usually suitable		
Lime	Doubtful	Usually suitable	Usually suitable	Usually not suitable	Doubtful	Usually suitable		
Bitumen	Doubtful	Doubtful	Usually not suitable	Usually suitable	Usually suitable	Usually not suitable		
Bitumen/ lime blends	Usually suitable	Doubtful	Usually not suitable	Usually suitable	Usually suitable	Doubtful		
Granular	Usually suitable	Usually not suitable	Usually not suitable	Usually suitable	Usually suitable	Doubtful		
Dry powder polymers	Usually suitable	Usually suitable	Usually unsuitable	Usually suitable	Usually suitable	Usually not suitable		
Other proprietary chemical products ⁽²⁾	Usually not suitable	Usually suitable	Usually suitable	Usually not suitable	Doubtful	Usually suitable		

Hydrated Lime v Quicklime

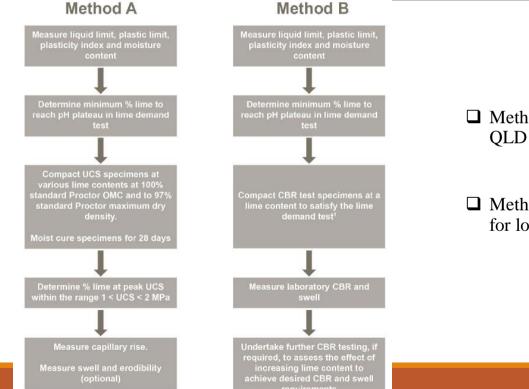
	Hydrated Lime, Ca(OH) ₂	Quicklime, CaO	
Composition	Ca(OH) ₂	CaO	
Form	Fine powder	Granular	
Equivalent Ca(OH) ₂ /unit mass	1.00	1.32	
Bulk Density (t/m ³)	0.45 to 0.56	1.05	
Used in Laboratory	Yes	No	
Used in Construction	Yes (least common)	Yes (most common)	

Lime slurry and agricultural lime are not used for conventional road stabilisation projects in Australia

🔗 Quicklime Conversion

If quicklime is specified for use in the field, a conversion factor 0.76 is applied to the laboratory determined hydrated lime application rate.

Quicklime (% in field) = Hydrated Lime (% in lab) x 0.76

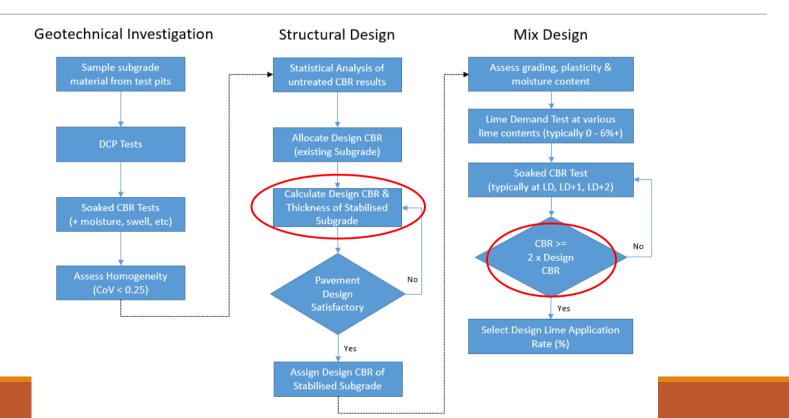

Eg. If the lab determined application rate is 4% H/L by mass,

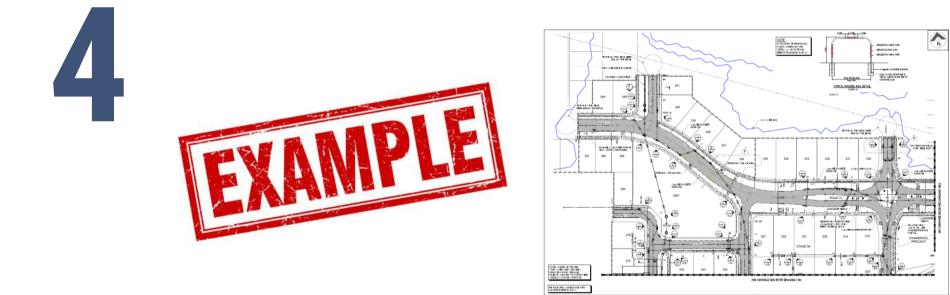
The field application rate can be: 3% Q/L by mass.

🔗 Mix Design Methods

Figure 4.4: Determination of lime content of earthworks materials

- Method A is traditionally only used by QLD DTMR
- Method B is the most common approach for local government


Lime Demand Testing

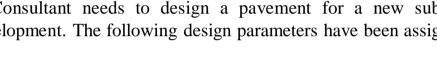

- □ Measures the pH of the clay at various lime contents.
- □ Lime demand value characterised as the minimum lime content to satisfy cation exchange by reaching a pH of 12.4 (Little, 1995).
- □ Lime application rates for CBR testing are recommended to be at LD, LD+1% and LD+2% as a minimum testing regime.
- □ Confirmation of a design application rate is then determined by selecting the lime content where the CBR exceeds the design CBR by a factor of 2 to account for variations in host material and lime properties.

Simplified Design Summary

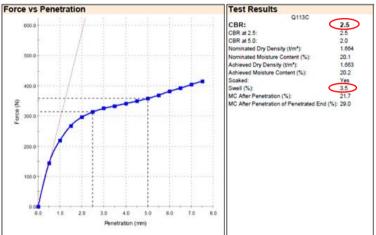
Table 5.2: Guide to classification of expansive soils

Expansive nature	Liquid limit (%)	Plasticity Index	PI x % < 0.425 mm	Swell (%) ⁽¹⁾
Very high	> 70	> 45	> 3200	> 5.0
High	> 70	> 45	2200–3200	2.5–5.0
Moderate	50–70	25–45	1200–2200	0.5–2.5
Low	< 50	< 25	< 1200	< 0.5

A Consultant needs to design a pavement for a new subdivision development. The following design parameters have been assigned:

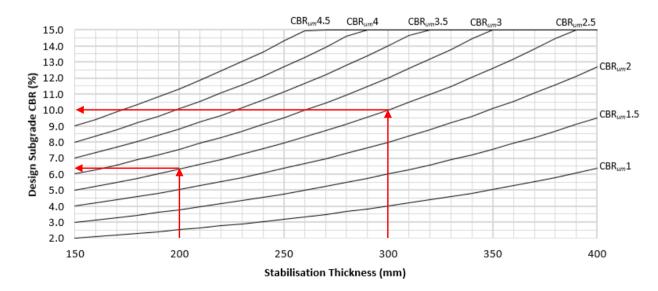

- Traffic loading:
- Existing expansive clay subgrade:

Design Example

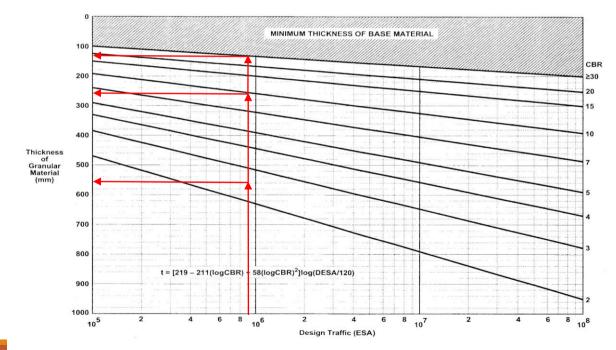

9.0E+05 DESA

CBR2.5

(3.5% swell)



Selection of Design CBR for Stabilised Subgrades

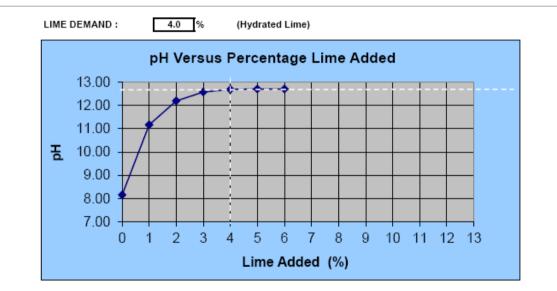


The maximum allowable design CBR is:

- 10% for a 300mm treatment
- 6% for a 200mm treatment

Pavement Layer Thickness Determination

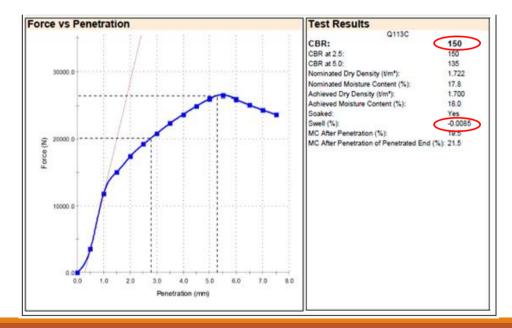
Minimum total cover over expansive clay subgrade CBR2.5 = 560mm


Minimum cover over 300mm Stabilised Subgrade CBR10 = 260mm

Minimum thickness of granular base CBR80 = 140mm

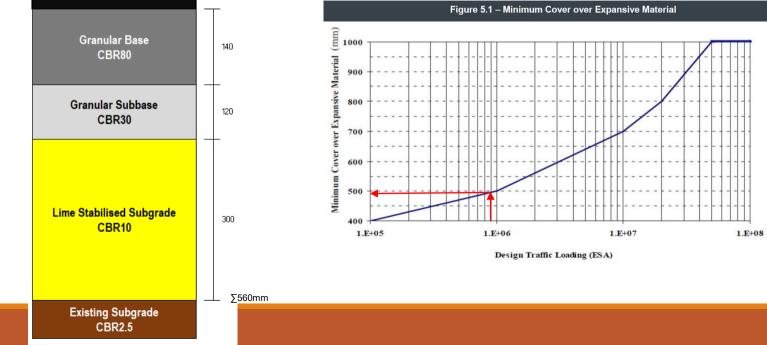
Balance thickness for granular subbase CBR30 = 120mm(260 - 140)

Step 2: Mix Design



Lime demand testing resulted in LD=4%.

Step 2: Mix Design


CBR testing was carried out at LD=4% which resulted in CBR=150% and no Swell

Design Recommendation

As the CBR test result at LD (4%) exceeded the target strength of CBR20 (design CBR10 x 2), the final design is:

SUMMARY

- Lime stabilisation can be extremely effective to limit permanent deformation and reduce the overlying pavement thickness, as long as proper design methods are followed
- Revised 2017 Austroads Structural Design Guide
- Design CBR increases of approximately 200-400%.
- Stabilised Subgrade Design Approach CBR stab. Subgrade = CBR UNDERLYING MATERIAL X 2 (STABILISED SUBGRADE THICKNESS / 150)

