
pitt&sherry

Specialist Knowledge. Practical Solutions.

International Public Works Conference – Hobart, Aug 2019 Implications of Fluvial Debris on the long-term serviceability of Bridges

Prepared by – Dr Haydn Betts, Martin Jacobs and Richard Cassidy Date – 28 August 2019

Overview pitt&sherry A knowledge gap between bridge designers/managers and hydrologists?

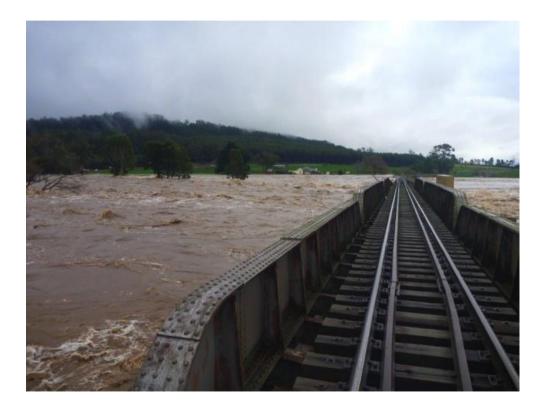
- Why bridges fail
- Australian Codes and Guidelines and their requirements
- Debris
- Scour
- Hydrology
- Hydraulic assessments
- CFD
- Concluding comments

Bridge failure modes

- Why do bridges fail?
 - FLOODS ranks as No 1 in Tasmania and No 3 worldwide through debris, trees, scoured foundations, extreme events washouts of abutments/embankments
 - Combination of issues e.g. wind, fatigued gusset plates and high temporary loads, ship impact (Lake Illawarra on Tasman Bridge in 1975),
 - Infrastructure issues, exceeded design loadings, poor maintenance

Hoggs Bridge on Mersey River

Hoggs Bridge on Mersey River


Tayatea Bridge in the Tarkine

Tayatea Bridge in the Tarkine

Kimberley Rail Bridge

Kimberley Rail Bridge

Australian practice and Guidelines

pitt&sherry

- Australian Bridge Code AS5100.2.2010 (2017)
- Australian Rainfall and Runoff 2016 & later 2019
- Austroads Guide to Bridge Technology Part 8: Hydraulic Design of Waterways
- Austroads Design Guidelines for Scour Chapter 8, Section 5
- Queensland DTMR Supplement to Austroads Chapter 8

Each of these have their own purpose but do not 'speak to each other'

AS 5100.2.2017/Amendment 1:2017 (p1) Chapter 16

- 16.1 Designed to resist the effects of water flow and wave action, including debris, log impact, scour and buoyancy
- 16.2 Velocity for each limit state (i.e. each span & each pier)
 - Substructures: V for **critical ARI*** through a bridge opening averaged over the depth of flow and over the relevant bridge span

pitt&sherry

- Superstructure and debris loading: V=> approach surface velocity
- Log and vessel impact: at the level of impact being considered and = 1.4xV
- Adverse effect of scour at each limit state

16.3 Limit States

- ULS: All floods up to 2000 year ARI: Load factor 1.3
- SLS: All floods up to the SLS defined flood (between 20 year and 100 year ARI depending on the criticality of the asset): Load factor 1.0

AS 5100.2.2017/Amdt 1:2017 Chapter 16

pitt&sherry

- 16.4 Forces on piers
- 16.5 Forces on superstructure
- 16.6 Forces due to debris
- Min 1.2m debris mat

No guidance on how to calculate hydrology, hydraulics, scour, actual debris mat, local velocity changes.

Flood estimation

pitt&sherry

- Australian Rainfall & Runoff (2016)
 - Rainfall
 - Critical durations
 - Temporal patterns
- Bureau of Meteorology (2017)
 - IFD to 1:2000 AEP
 - Rainfall radar loops as images
 - Continuous recording pluvios
- State and BOM
 - Long term rainfall records
- The traditional focus of hydrology has been on keeping the road or rail dry, rather than keeping it standing up in a flood under debris loads and scour

BoM flood history- by state http://www.bom.gov.au/tas/flood/fld_history/ Real time http://www.bom.gov.au/australia/flood/ DPIPWE (Tas) water monitoring sites TheWist http://wrt.tas.gov.au/wist Rainfall www.bom.gov.au/climate/data/stations River http://www.bom.gov.au/tas/flood/index.shtml?ref=hdr

pitt&sherry

Austroads – Scour Qld TMR – Supplement to Austroads

Austroads

- Direction for estimation of general bed and local scour for the protection and design of piers to Service Level State.
 - Increase column length and loads increase depending on column ends (fixed or allowed to rotate)
- Scour protection for abutments is critical
 - Often abutments fail first

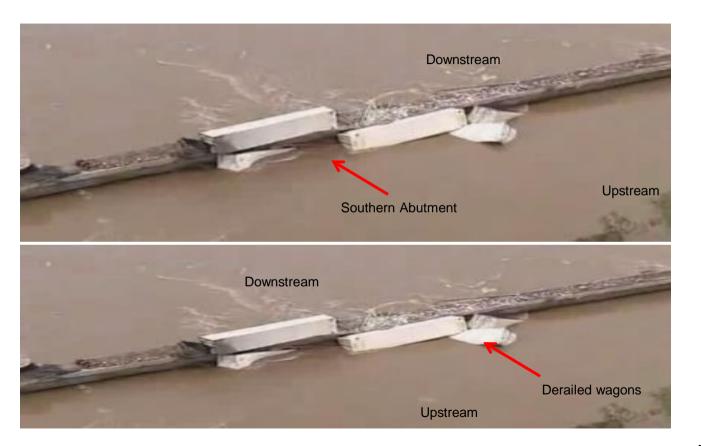
Queensland Transport and Main Roads Supplement to Austroads Chapter 8

- Recommends the use of two-dimensional hydraulic models
- Comments that 1D models might represent pressurised but perhaps not vertical contraction
- Computational Fluid Dynamics (CFD) used in complex flow patterns, local accelerations and spiral flow patterns

Serviceability considerations

- AEP of bridges usually 1% AEP
 - Deck level can be higher than 1% AEP
 - Or soffit 600mm above 1% AEP
- At what immunity should we protect against scour?
- Should scour protection be provided to embankments? (upstream and downstream)
- Railway embankments ballast will mobilise if critical shear stress is 50 to 80 N/m²

Case studies


- 1. Edith Creek Railway bridge Northern Territory
- 2. Low Road bridge South-East Queensland
- 3. Railway bridge Tasmania
- 4. Arterial Road Bridge Queensland
- 5. Four bridges in Papua New Guinea

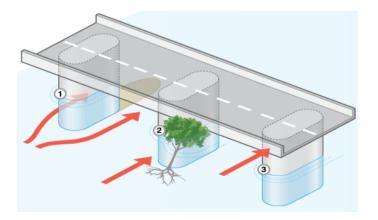
Case Study 1: Edith Creek railway bridge - Original Construction (2003 dry season)

Acknowledgement Dr Jeevan Senthilvasan

Case Study 1: Flood Event December 2011

pitt&sherry

Acknowledgement Dr Jeevan Senthilvasan Case Study 1: Southern Approach



pitt&sherry

Acknowledgement Dr Jeevan Senthilvasan

Case Study 1: Hydraulic Action

- Spread footing
 - Risk from scour when scour level reaches base of footing
 - Less lateral capacity even before the scour reaches the base.
- Pile foundation
 - Loss of skin friction and bearing capacity, scour increases unsupported length of piles
- Overtopping of approach
 - Overtopping and turbulent flow adjacent to approach embankments can lead to erosion and scour of the side slopes and toes of the embankments

Case Study 2: Kimberley Railway bridge Tasmania

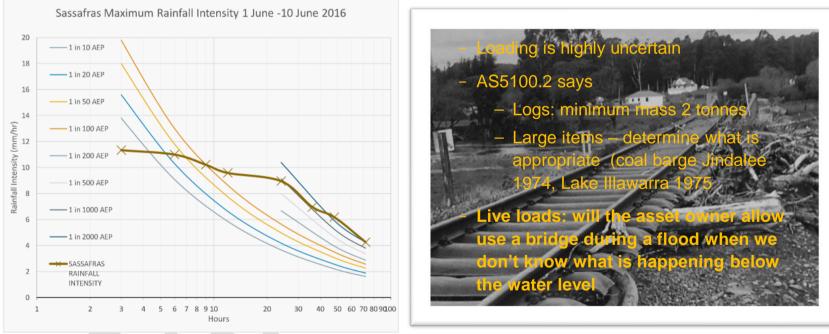
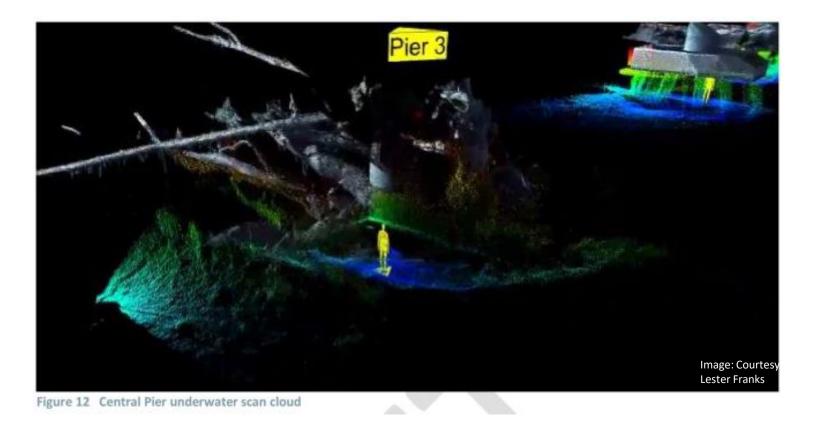
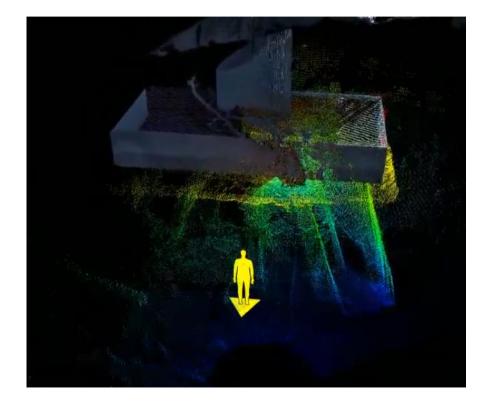




Figure 14 Sassafras recorded rainfall intensities

Case Study 3: Debris & scour below pile cap

Case Study 3: Debris & scour below pile cap

Case Study 3: Debris & scour below pile cap

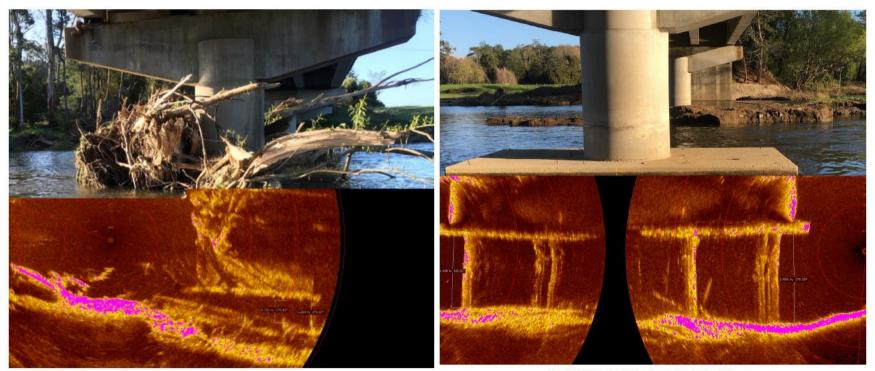
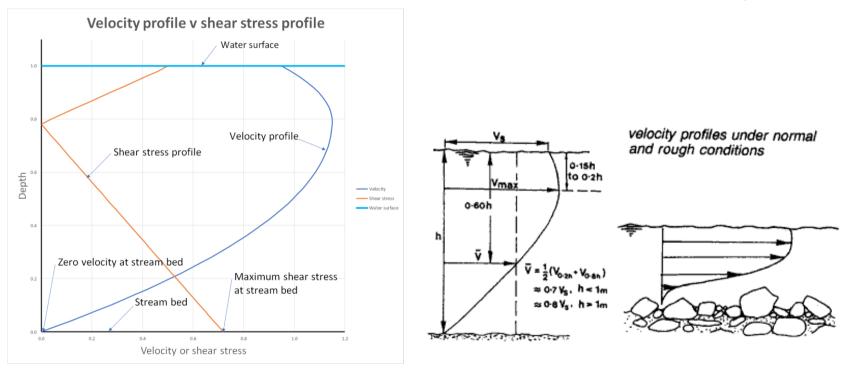
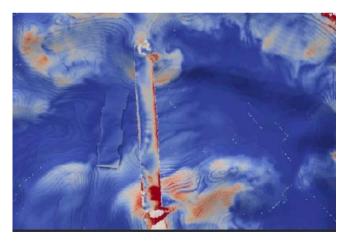
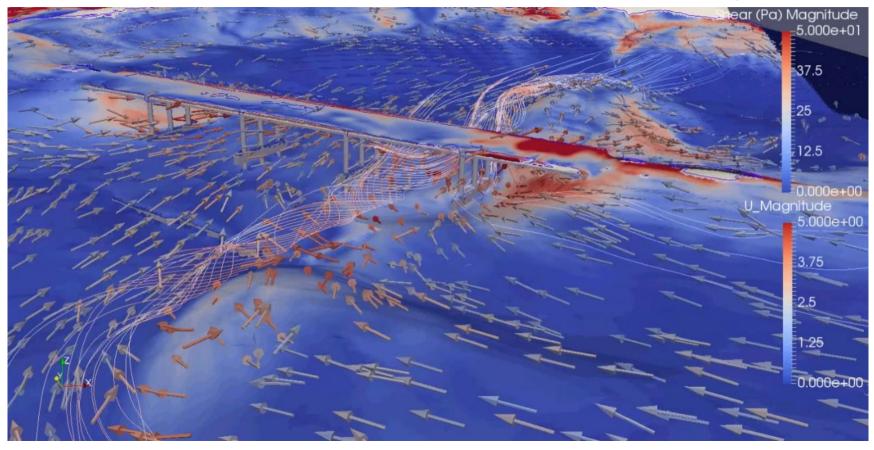



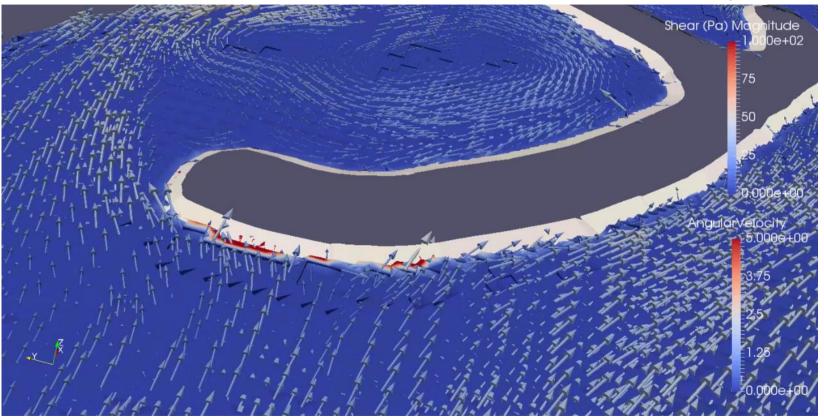
Figure 10: Pier 3 Southern face undermining


Figure 9: Pier 2 Northern Face, looking south, extensive undermining and pile exposure

Velocity profiles


Case Study 4: Arterial road bridge CFD modelling

- CFD modelling provides more certainty of bridge hydraulic loads, shear stresses
- Reduces capital costs
- Forensic analysis of bridge failures
- Reduces lifetime risk



Case Study 4: Arterial road bridge CFD modelling

Case Study 5: CFD modelling 4 bridges PNG

Conclusions

- Flooding and related issues (scour, debris) is the number one cause of bridge failure in Tasmania. It deserves significant consideration in both design and asset management
- During design
 - Do hydraulic engineers adequately inform the bridge designers?
 - Do bridge designer clients tell us what they need?
 - Does the asset owner ensure appropriate consideration has occurred?
- Establish the road network function design standard
 - It is general use or does it have importance pre/post flood emergency and recovery
 - 1% immunity (combination of flood, debris and scour?), Immunity of the network or the bridge, or both
- Design Basis
 - Debris, likelihood, what loads and when?
 - What velocity and shear stress information is needed and where?
 - Do we have sufficient geotechnical information to adequately assess scour?
 - Who should approve the scour design methods? the hydraulic engineer, geotechnical engineer or structural engineer? Each have a responsibility.

pitt&sherry

Any questions?

Acknowledgements

Pitt&sherry's design team leaders

- Richard Cassidy
- Ben Hart
- Martin Jacobs

Former colleagues

- Dr Andrew Sonnenberg
- Dr Jeevan Senthilvasan