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Overview
A knowledge gap between bridge designers/managers and hydrologists?

– Why bridges fail 

– Australian Codes and Guidelines and their requirements

– Debris

– Scour

– Hydrology

– Hydraulic assessments

– CFD

– Concluding comments
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Bridge failure modes

– Why do bridges fail?

– FLOODS – ranks as No 1 in Tasmania and No 3 worldwide– through debris, trees, scoured foundations, extreme events 

washouts of abutments/embankments 

– Combination of issues – e.g. wind, fatigued gusset plates and high temporary  loads, ship impact (Lake Illawarra on 

Tasman Bridge in 1975), 

– Infrastructure issues, exceeded design loadings, poor maintenance



Hoggs Bridge on Mersey River
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Hoggs Bridge on Mersey River
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Tayatea Bridge in the Tarkine
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Tayatea Bridge in the Tarkine
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Kimberley Rail Bridge
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Kimberley Rail Bridge
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Australian practice and Guidelines

– Australian Bridge Code AS5100.2.2010 (2017)

– Australian Rainfall and Runoff 2016 & later 2019

– Austroads Guide to Bridge Technology Part 8: Hydraulic Design of Waterways

– Austroads Design Guidelines for Scour Chapter 8, Section 5 

– Queensland DTMR Supplement to Austroads Chapter 8

Each of these have their own purpose but do not ‘speak to each other’
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16.1 Designed to resist the effects of water flow and wave action, including debris, log impact, 

scour and buoyancy

16.2 Velocity – for each limit state (i.e. each span & each pier)

• Substructures: V for critical ARI* through a bridge opening averaged over the depth of flow and 

over the relevant bridge span 

• Superstructure and debris loading: V=> approach surface velocity

• Log and vessel impact: at the level of impact being considered and = 1.4xV

• Adverse effect of scour at each limit state

16.3 Limit States

• ULS:  All floods up to 2000 year ARI:  Load factor 1.3

• SLS:  All floods up to the SLS defined flood (between 20 year and 100 year ARI depending on 

the criticality of the asset):  Load factor 1.0

AS 5100.2.2017/Amendment 1:2017  (p1)
Chapter 16



AS 5100.2.2017/Amdt 1:2017 
Chapter 16

16.4  Forces on piers

16.5  Forces on superstructure

16.6 Forces due to debris

– Min 1.2m debris mat

No guidance on how to calculate hydrology, hydraulics, scour, actual debris mat, local velocity changes.



Flood estimation

– Australian Rainfall & Runoff (2016) 

– Rainfall

• Critical durations

• Temporal patterns

– Bureau of Meteorology (2017) 

– IFD to 1:2000 AEP

– Rainfall radar loops as images

– Continuous recording pluvios

– State and BOM

– Long term rainfall records

– The traditional focus of hydrology has been on keeping the road or rail dry, rather than keeping 

it standing up in a flood under debris loads and scour

BoM flood history- by state 
http://www.bom.gov.au/tas/flood/fld_history/
Real time http://www.bom.gov.au/australia/flood/
DPIPWE (Tas) water monitoring sites
TheWist http://wrt.tas.gov.au/wist
Rainfall www.bom.gov.au/climate/data/stations
River http://www.bom.gov.au/tas/flood/index.shtml?ref=hdr

http://www.bom.gov.au/qld/flood/fld_history/
http://www.bom.gov.au/australia/flood/
http://wrt.tas.gov.au/wist
http://www.bom.gov.au/climate/data/stations
http://www.bom.gov.au/tas/flood/index.shtml?ref=hdr


Austroads – Scour
Qld TMR – Supplement to Austroads

Austroads

– Direction for estimation of general bed and local scour for the protection and design of piers to Service Level State.

– Increase column length and loads increase depending on column ends (fixed or allowed to rotate)

– Scour protection for abutments is critical

– Often abutments fail first

Queensland Transport and Main Roads Supplement to Austroads Chapter 8

– Recommends the use of two-dimensional hydraulic models

– Comments that 1D models might represent pressurised but perhaps not vertical contraction

– Computational Fluid Dynamics (CFD) used in complex flow patterns, local accelerations and spiral flow patterns
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Serviceability considerations

– AEP of bridges – usually 1% AEP

– Deck level can be higher than 1% AEP

– Or soffit 600mm above 1% AEP

– At what immunity should we protect against scour?

– Should scour protection be provided to embankments?  (upstream and downstream)

– Railway embankments – ballast will mobilise if critical shear stress is 50 to 80 N/m²



Case studies

1. Edith Creek Railway bridge  - Northern Territory

2. Low Road bridge – South-East Queensland

3. Railway bridge Tasmania

4. Arterial Road Bridge Queensland

5. Four bridges in Papua New Guinea
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Case Study 1:  Edith Creek railway bridge - Original 
Construction (2003 dry season)

Acknowledgement
Dr Jeevan Senthilvasan



Case Study 1: Flood Event December 2011

Southern Abutment

Upstream

Downstream

Derailed wagons

Downstream

Upstream
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Case Study 1: Southern Approach

Acknowledgement
Dr Jeevan Senthilvasan



Case Study 1: Hydraulic Action

– Spread footing

– Risk from scour when scour level reaches base of footing

– Less lateral capacity even before the scour reaches the base.

– Pile foundation

– Loss of skin friction and bearing capacity, scour increases unsupported length of piles

– Overtopping of approach

– Overtopping and turbulent flow adjacent to approach embankments can lead to erosion and 

scour of the side slopes and toes of the embankments



Case Study 2:  Kimberley Railway bridge Tasmania
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– Loading is highly uncertain

– AS5100.2 says

– Logs: minimum mass 2 tonnes

– Large items – determine what is 

appropriate  (coal barge Jindalee 

1974, Lake Illawarra 1975

– Live loads: will the asset owner allow 

use a bridge during a flood when we 

don’t know what is happening below 

the water level



Case Study 3: Debris & scour below pile cap

Image: Courtesy 
Lester Franks



Case Study 3: Debris & scour below pile cap
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Case Study 3: Debris & scour below pile cap
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Velocity profiles



Case Study 4: Arterial road bridge CFD modelling
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– CFD modelling provides more 

certainty of bridge hydraulic loads, 

shear stresses

– Reduces capital costs 

– Forensic analysis of bridge failures

– Reduces lifetime risk



Case Study 4: Arterial road bridge CFD modelling
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Case Study 5: CFD modelling 4 bridges PNG
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Conclusions

– Flooding and related issues (scour, debris) is the number one cause of bridge failure in Tasmania. It deserves 

significant consideration in both design and asset management

– During design 

– Do hydraulic engineers adequately inform the bridge designers?

– Do bridge designer clients tell us what they need?

– Does the asset owner ensure appropriate consideration has occurred?

– Establish the road network function design standard

– It is general use or does it have importance pre/post flood emergency and recovery

– 1% immunity (combination of flood, debris and scour?), Immunity of the network or the bridge, or both

– Design Basis

– Debris, likelihood, what loads and when?

– What velocity and shear stress information is needed and where?

– Do we have sufficient geotechnical information to adequately assess scour?

– Who should approve the scour design methods?  the hydraulic engineer, geotechnical engineer or 

structural engineer?  Each have a responsibility.



Any questions?
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