

Developments in design of bedding materials

Presented by: Husham Issa, Senior Civil Engineer , Humes Pipeline Systems

IPWEA NZ – LDEG – Queenstown 21st March 2014

Tc = Wg/F + Wq/Fq Where

Wg = Working load due to fill and superimposed loads Wq = Working load due to superimposed live loads $E_{\rm r}$ = Bedding Factor (1 = 4 depending on type of pipe of

F = Bedding Factor (1 – 4 depending on type of pipe support) Fq = The lesser of 1.5 and F

AS/NZS 3725

- The requirements for the material selection, or select fill, for bedding construction have been in place in AS/NZS 3725 since 1989.
- Select fill is defined in the Standard as:

"The material obtained from excavation of the pipe trench or elsewhere with a particle size not greater than 75 mm, and which conforms with the soil classes given in Table 1."

TABLE 1 FROM AS/NZS 3725: SOIL CLASSES AS DEFINED IN AS 1726

Abbreviation	Description	
sc	Clayey sands with fines of low plasticity	
SP	Poorly graded sands	
SW	Well-graded sands	
GC Clayey gravels with fines of low plasticity		
GW Well-graded sand and gravel mixtures with little or no plastic fines		
GP	Poorly graded sand and gravel mixtures with little or no plastic fines	

Concrete Pipe Association of Australasia

AS/NZS 3725

- AS/NZS 3725 2007 includes details of the material required to achieve minimum compaction levels that are aligned with the various support types recommended for steel reinforced concrete pipe.
- It outlines strict grading requirements and specific compaction levels for the material required for the construction of –
 - Bed and haunch zones (Table 6, AS/NZS 3725)
 - Side zones (Table 7, AS/NZS 3725).

TABLE 6 – GRADING LIMITS FOR SELECT FILL IN BED AND HAUNCH ZONES

Sieve size (mm)	Weight passing (%)
19.0	100
2.36	100 - 50
0.60	90 - 20
0.30	60 - 10
0.15	25-0
0.075	10 - 0

TABLE 7 – GRADING LIMITS FOR SELECT FILL IN SIDE ZONES

Sieve size (mm)	Weight passing (%)
75.0	100
9.5	100 - 50
2.36	100 – 30
0.60	50 - 15
0.075	25 - 0

Concrete Pipe Association of Australasia

BEDDING FACTORES FOR WORKING DEAD LOADS

		Minimum depth, mm		Minimum zone compaction, %			Dedding	
Support Type			Haunah	Bed and	Side zones		factor	
Suppor	птуре	Bed zone x	zone y	haunch zones <i>ID</i>	ID	RD	(<i>F</i>)	
U		75					1.0	
	H1	100 if D <	0.1D	50			1.5	
н	H2	1500; or 150 if D > 1500	0.3D	60			2.0	
	HS1	100 if D <	0.1D	50	50	85	2.0	
HS	HS2	1500; or 150 if	0.3D	60	60	90	2.5	
	HS3	D > 1500	0.3D	70	70	95	4.0	

AS/NZS 3725

- It is expected that this be replicated on site so as to achieve the design requirements.
- However, what if these specific fill materials are **not** available?
- What alternatives are there when the selected fill materials and corresponding grading limits outlined in AS/NZS 3725 cannot be sourced or achieved, without compromising the bedding factor associated with the designed support type?

Other Standards

ASTM C1479-13 - 2013 US Standard – installation of SRCP

ACPA – "Standard Installations and Bedding Factors for Indirect Design"

Table 1	Equivale: Classific	nt USCS an ations for S	d AASHTO S SIDD Soil De	ioil signation	
	Represe Soil Ty	ntative ypes	Percent Compaction		
SIDD Sail	USCS	AASHTO	Standard Proctor	Modified Proctor	
Gravelly Sand (Category I)	SW, SP GW, GP	A1, A3	100 95 90 85 80 61	95 90 85 80 75 59	
Sandy Silt (Category II)	GM, SM, ML Also GC, SC with less than 20% passing #200 sieve	A2, A4	100 95 90 85 80 49	95 90 85 80 75 46	
Silty Clay (Category III)	CL, MH GC, SC	A5, A6	100 95 90 85 80 45	90 85 80 75 70 40	

- Category 1 SW and GW typical of AS/NZS 3725 but SP and GP not well graded (but can be easily compacted).
 - Category 2 GC and SC common with AS/NZS 3725 requirements.
- Category 3 these soil types are not permitted as select fill by AS/NZS 3725

Concrete Pipe Association of Australasia

Other Standards

- ASTM C1479-13 2013 US Standard installation of SRCP
- ACPA "Standard Installations and Bedding Factors for Indirect Design"

installation Type	Bedding Thickness	Haunch and Outer Bedding	Lower Side	
Туре 1	D ₂ /24 minimum, not less than 3 in. If rock foundation, use D ₂ /12 minimum, not	95% Category I	90% Category I, 95% Category II. or 100% Category III	Installations compared:
	less than 6 in.			Type 1 = HS3
Type 2	D /24 minimum, not	90% Category I	85% Category I,	71
	less than 3 in.	Or Category II	90% Category II,	
	D ₂ /12 minimum, not	Category in	95% Category III	• Type $2/3 = HS2$
	less than 6 in.			
Туре З	D _g /24 minimum, not	85% Category I,	85% Category I,	■ Type 3// - HS1
	less than 3 in.	90% Category II,	90% Category II,	- 1ype 3/4 - 1131
	$D_{o}/12$ minimum, not	95% Category III	95% Category III	
	less than 6 in.			Type 4 = H1
Type 4	D/24 minimum, not	No compaction	No compaction require,	1982 1 111
	less than 3 in.	required, except if	except if Category III,	
	D _o /12 minimum, not	use 85% Category III	use 85% Category III	
	less than 6 in.			

- Compaction standards vary with material category.
- Compaction levels required the same for equivalent in AS/NZS 3725.
- Material category chosen depends on installation type.

Concrete Pipe Association of Australasia

Other Standards

- AS/NZS 2566.1 Flexible Plastic Pipe (Design)
- This standard covers the design of buried flexible pipelines and as such the bedding design and installation is critical to the overall success of the completed pipeline.
 - Embedment materials must provide a minimum support stiffness as measured by compaction ratios.
 - Includes materials nominated in AS/NZS 3725 Table 1.
 - Typical compaction ratios range from Rd 85 to 95.
 - Note 2 of the table recognises the need to protect against the migration of fines where appropriate.

Concrete Pipe Association of Australasia

Selecting Materials for Bedding SRCP

- It can be seen that AS/NZS 3725 can be restrictive with regard to the selection of suitable materials bedding support systems.
- Other pipe standards use a wide range of soil materials in bedding support systems, requiring different –
 - compaction standards and design,
 - testing
 - quality control initiatives.
- Anecdotal evidence would suggest that the use of "non-complying" materials, when installing concrete pipe, has always occurred.
- However, in areas where formal sign off to AS/NZS 3725 is needed, how restrictive is the Standard being and to what cost?

Selecting Materials for Bedding SRCP

- The CPAA Engineering Guideline "Selecting Materials for Bedding SRCP" suggests that alternative materials can be used.
- These alternatives should be confirmed as suitable by:
 - Implementing sound construction and quality control plans.
 - Conducting field trials to demonstrate required compaction standards can be achieved
 - Reviewing and preparing design to mitigate the potential migration of fines (i.e. including geotextiles)
- With sound construction and geotechnical input, an innovative and cost effective bedding support solution, consistent with the bedding factors outlined in AS/NZS 3725 to achieve design requirements, can be achieved.

Recommendations (summary)

- In addition to the requirements of AS/NZS 3725, the CPAA recommends the following guidelines be considered:
- Select fill complying with the generic soil classes as defined in AS 1726 and shown in Table 1 of AS/NZS 3725,

TABLE 1 FROM AS/NZS 3725: SOIL CLASSES AS DEFINED IN AS 1726

Abbreviation	Description	
sc	Clayey sands with fines of low plasticity	
SP	Poorly graded sands	
SW	Well-graded sands	
GC	Clayey gravels with fines of low plasticity	
GW	Well-graded sand and gravel mixtures with little or no plastic fines	
GP	Poorly graded sand and gravel mixtures with little or no plastic fines	

but not complying with the particle size distribution of Tables 6 and 7 of AS/NZS 3725 may be used in the bed, haunch, and side zone, provided that:

Concrete Pipe Association of Australasia

Selecting Materials for Bedding SRCP

a) It shall be demonstrated through construction plans, quality control plans, and field trials that the degree of compaction shown in Table B of this guideline, corresponding to the selected bedding type and material, can be achieved, and,

Table B

MINIMUM COMPACTION REQUIREMENTS FOR VARIOUS BEDDING TYPES AND SELECT FILL SOIL CLASSES

Bedding Type	н	\$3	H	52	H	S 1	H	2	Н	1
Bedding Material	lo	RD	ID	R _D	lp	R _D	ID	Ro	lò	RD
SW, SP, GW, GP	70	95	60	90	50	85	60	90	50	85
SC, GC	n/a	n/a	70	95	60	90	70	95	60	90

NOTES: 1. I_D refers to Density Index (%) and is for cohesionless materials (refer to Clause 8, AS/NZS 3725 for more information).
2. R_D refers to Dry Density Ratio (%) and is for cohesive materials (refer to Clause 8, AS/NZS 3725 for more information).

b) Methods to prevent migration of soil fines from, and into the bedding material, shall be provided when ground water movement or existing soil and bedding conditions are conducive to particle migration, and

Selecting Materials for Bedding SRCP

- Long thin particles are not used (despite complying with the grading C) standards), due to their angular shape which increases the risk of stress on the pipe due to inadequate or non-uniform bedding, and,
- Maximum particle size of select fill materials in bed, hunch, and side d) zones shall not be greater than the recommended limits given in Table C, or so selected to ensure uniform support around the pipes, and prevent concentrated point loading.

Alternatively, if a) to d) inclusive cannot be achieved, the bedding material must be cement stabilised.

NOTES: If the requirements for the above recommendations are met, the bedding factor reduction outlined in AS/NZS 3725 Clause 9.3.2will not apply. However, as in accordance with AS/NZS 3725 Clause 9.3.3, bedding factors will be reduced in line with the Standards recommendations if the conditions prescribed for the use of these materials cannot be demonstrated or achieved.

Table C

RECOMMENDED MAXIMUM PARTICLE SIZE (mm)

Pipe diameter	Bedding Zon	e
DN	Bed and Haunch	Side
225-1350	20	40
1500 - 2250	40	75
> 2250	65	75

3D view of where longitudinal cracks can occur and what they look like.

Looking at a pipe in section and the effect that overloading can have on a pipe.

Concrete Pipe Association of Australasia

Defect	Description	Magnitude	Solution
Tyme 1	Circumferential crack	Width <0.15 mm	Accept
Type I	Longitudinal crack	Width <0.15 mm	Accept
Tumo 2	Circumferential crack	0.15 mm< Width <0.50 mm	Accept
Type 2	Longitudinal crack	Width >0.15 mm	Assess Design
T 0	Circumferential crack	Width >0.50 mm	Assess implication of ingress
Type 5	Longitudinal crack	Width >0.50 mm	As per Type 2
Type 4	Chip or spall	Depth <0.25 ^x cover	Accept
Type 5 or 6	Chip or Spall	Depth >0.25×cover	Assess implication Repair

